2,809 research outputs found

    G-quartet biomolecular nanowires

    Full text link
    We present a first-principle investigation of quadruple helix nanowires, consisting of stacked planar hydrogen-bonded guanine tetramers. Our results show that long wires form and are stable in potassium-rich conditions. We present their electronic bandstructure and discuss the interpretation in terms of effective wide-bandgap semiconductors. The microscopic structural and electronic properties of the guanine quadruple helices make them suitable candidates for molecular nanoelectronics.Comment: 7 pages, 3 figures, to be published in Applied Physics Letters (2002

    A TDDFT study of the excited states of DNA bases and their assemblies

    Get PDF
    We present a detailed study of the optical absorption spectra of DNA bases and base pairs, carried out by means of time dependent density functional theory. The spectra for the isolated bases are compared to available theoretical and experimental data and used to assess the accuracy of the method and the quality of the exchange-correlation functional: Our approach turns out to be a reliable tool to describe the response of the nucleobases. Furthermore, we analyze in detail the impact of hydrogen bonding and π\pi-stacking in the calculated spectra for both Watson-Crick base pairs and Watson-Crick stacked assemblies. We show that the reduction of the UV absorption intensity (hypochromicity) for light polarized along the base-pair plane depends strongly on the type of interaction. For light polarized perpendicular to the basal plane, the hypochromicity effect is reduced, but another characteristic is found, namely a blue shift of the optical spectrum of the base-assembly compared to that of the isolated bases. The use of optical tools as fingerprints for the characterization of the structure (and type of interaction) is extensively discussed.Comment: 31 pages, 8 figure

    Artificial Neural Network for Predicting Silicon Content in the Hot Metal Produced in a Blast Furnace Fueled by Metallurgical Coke

    Get PDF
    The main production route for cast iron and steel is through the blast furnace. The silicon content in cast iron is an important indicator of the thermal condition of a blast furnace. High silicon contents indicate an increase in the furnace\u2019s thermal input and, in some cases, may indicate an excess of coke in the reactor. As coke costs predominate in the production of cast iron, tighter control of the silicon content therefore has economic advantages. The main objective of this article was to design an artificial neural network to predict the silicon content in hot metal, varying the number of neurons in the hidden layer by 10, 20, 25, 30, 40, 50, 75, 100, 125, 150, 170 and 200 neurons. In general, all neural networks showed excellent results, with the network with 30 neurons showing the best results among the 12 modeled networks. The validation of the models was confirmed using the Mean Square Error (MSE) and Pearson\u2019s correlation coefficient. The cross-validation technique was used to re-evaluate the performance of neural networks. In short, neural networks can be used in practical operations due to the excellent correlations between the real values and those calculated by the neural network

    Atomic structure and stability of AIN(0001) and (0001) surfaces

    No full text

    Analysis of pH variation of various calcium hydroxide compounds in vitro

    Get PDF
    Among the reasons for the use of calcium hydroxide products, there is their alkalinity. Variations in the alkalinity of six commonly used calcium hydroxide compounds were studied in vitro at different time intervals. All these compounds rendered the saline solution strongly alkaline. Dycal®, Life®, Nucap® and Reocap®, had a weaker effect as compared with Contrasil® and to Pulpdent® paste. Such differences in the pH values were accompanied by differences in calcium loss, as revealed by scanning electron microscopy. Differences in the alkaline pH values and calcium losses among these calcium hydroxide compounds may account for their different clinical effectiveness in vivo.Une des raisons de l’utilisation des produits à base d’hydroxyde de calcium est leur alcalinité. Les variations alcalines des 6 matériaux à base d’hydroxyde de calcium couramment utilisés ont été testées in vitro à différents intervalles de temps. Dycal®, Life®, Nucap® and Reocap®, avaient un effet plus faible que Contrasil® et Pulpdent® paste. Les différences de valeurs de pH étaient accompagnées de pertes de calcium. Les différentes valeurs de pH ainsi que les pertes de calcium pourraient expliquer leur diverse efficacité in vivo

    Energetics of AIN thin films and the implications for epitaxial growth on SiC

    Get PDF

    Optical spectra of nitride quantum dots: Quantum confinement and electron-hole coupling

    Get PDF
    We calculate the optical properties of nitride-based quantum dots by taking into account quantum confinement as well as electron-hole interaction. We analyze model structures simulating In_xGa_{1−x}N dots in In_yGa_{1−y}N layers with different alloy compositions. We discuss the trends with the dot size and show that quantum confined excitations exist for a broad range of sizes down to the smallest observed dots. Our results allow us to identify the strong role of Coulomb correlations in the optical spectra and to predict a strong influence of photoexcitation power on selection rules in polarized samples. The signature of quantum confinement can be utilized for a critical interpretation of measured optical spectra

    First principle theory of correlated transport through nano-junctions

    Get PDF
    We report the inclusion of electron-electron correlation in the calculation of transport properties within an ab initio scheme. A key step is the reformulation of Landauer's approach in terms of an effective transmittance for the interacting electron system. We apply this framework to analyze the effect of short range interactions on Pt atomic wires and discuss the coherent and incoherent correction to the mean-field approach.Comment: 5 pages, 3 figure

    Antioxidants in sport sarcopenia

    Get PDF
    The decline of skeletal muscle mass and strength that leads to sarcopenia is a pathology that might represent an emergency healthcare issue in future years. Decreased muscle mass is also a condition that mainly affects master athletes involved in endurance physical activities. Skeletal muscles respond to exercise by reshaping the biochemical, morphological, and physiological state of myofibrils. Adaptive responses involve the activation of intracellular signaling pathways and genetic reprogramming, causing alterations in contractile properties, metabolic status, and muscle mass. One of the mechanisms leading to sarcopenia is an increase in reactive oxygen and nitrogen species levels and a reduction in enzymatic antioxidant protection. The present review shows the recent experimental models of sarcopenia that explore molecular mechanisms. Furthermore, the clinical aspect of sport sarcopenia will be highlighted, and new strategies based on nutritional supplements, which may contribute to reducing indices of oxidative stress by reinforcing natural endogenous protection, will be suggested
    • …
    corecore